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Abstract
We propose a novel deep learning method for local self-supervised
representation learning that does not require labels nor end-to-end
backpropagation but exploits the natural order in data instead. In-
spired by the observation that biological neural networks appear to
learn without backpropagating a global error signal, we split a deep
neural network into a stack of gradient-isolated modules. Each module
is trained to maximize the Mutual Information between its consecutive
outputs using the InfoNCE bound from Oord et al. (2018). Despite this
greedy training, we demonstrate that each module improves upon the
output of its predecessor, and that the representations created by the
top module yield highly competitive results on downstream classifica-
tion tasks in the audio and visual domain. The proposal enables opti-
mizing modules asynchronously, allowing for large-scale distributed
training of very deep neural networks on unlabeled datasets.
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1 Introduction
Building human-level general Artificial Intelligence (AI) has
been a major goal in computer science ever since the creation
of this scientific field (Turing, 1950). Back then, expectations
that machines would soon reach and surpass human-level
intelligence were high. In 1965, Nobel price winner Herbert
Simon famously predicted that “machines will be capable,
within twenty years, of doing any work a man can do”. In
hindsight, achieving general AI turned out to be much more
challenging.

Recently, the tech world shows new enthusiasm to solve
human-level AI. Deep learning enabled machines to surpass
human performance in various fields, such as image classifica-
tion (He et al., 2016a), the ancient Chinese game of Go (Silver
et al., 2017) and StarCraft II (Vinyals et al., 2019). However,
these successes are very restricted. The high performance of
these algorithms depends on raw compute power incomparable
to the efficiency of the human brain, both in terms of energy
consumption and sample efficiency. At the same time, ma-
chines outperform humans only in very narrow, well-defined
domains. In most areas essential to human intelligence, such as
reasoning, common-sense and basic motor control, algorithms
still fail to approach the cognitive abilities of a four-year-old.

Overall, building human-level AI has proven itself to be a
daunting task. The search space of possible solutions is vast
and, given our failure of finding any solution yet, probably
very sparsely populated (Hassabis et al., 2017). So far, the
human brain provides the only proof that a solution exists
at all. We argue that it can thus provide valuable insights
into the aspects necessary for achieving higher-level general
intelligence.

Originally, Artificial Neural Networks (ANNs) were in-
spired by biological neural networks (McCulloch and Pitts,
1943), and neuroscience continues to play a role in the develop-
ment of new approaches (Cox and Dean, 2014). Nonetheless,
most recent advances are guided by insights into the mathe-
matics of efficient optimization. ANNs nowadays are typically
optimized using batch-wise stochastic gradient descent and
the weights are updated using backpropagation. Additionally,
numerous tricks such as better weight initializations (Sutskever
et al., 2013), dropout (Srivastava et al., 2014) or batch normaliza-
tion (Ioffe and Szegedy, 2015) have been developed to improve
the stability and efficiency of the training process and the final
testing results. There are little apparent connections between
these approaches and neuroscience (Marblestone et al., 2016).
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In this thesis, we challenge the most commonly applied
learning algorithm for ANNs, end-to-end backpropagation of a
global, supervised loss function. Although empirically proven
to be very successful (Krizhevsky et al., 2012; Szegedy et al.,
2015; He et al., 2016a), this approach is considered biologically
implausible for several reasons. For one, supervised learning
requires enormous labeled datasets to ensure generalization.
In contrast, children receive mostly unlabeled inputs, and they
can learn to categorize a new image class based on a handful
of samples. Additionally, despite some evidence for top-down
connections in the brain, there does not appear to be a global
objective that is optimized by backpropagating error signals
(Crick, 1989; Marblestone et al., 2016). Instead, the biological
brain is highly modular and learns predominantly based on
local information (Caporale and Dan, 2008).

In addition to this lack of a natural counterpart, the super-
vised training of neural networks with end-to-end backpropa-
gation suffers from practical disadvantages as well. Supervised
learning requires labeled inputs, which are expensive to obtain.
As a result, it is not applicable to the majority of available data.
On top of that, it suffers from a higher risk of overfitting, as
the number of parameters required for a deep model often
exceeds the number of labeled data points at hand. End-to-
end backpropagation, on the other hand, creates a substantial
memory overhead in a naïve implementation, as the entire
computational graph, including all parameters, activations and
gradients, needs to fit in a processing unit’s working mem-
ory. In the literature, there exist two approaches to prevent
this which either require the recomputation of intermediate
outputs (Salimans and Bulatov, 2017) or expensive reversible
layers (Jacobsen et al., 2018). Nonetheless, this inhibits the
application of deep learning models to high-dimensional input
data that surpasses current memory constraints. This prob-
lem is perpetuated as end-to-end training does not allow for
an exact way of asynchronously optimizing individual lay-
ers (Jaderberg et al., 2017). In a globally optimized network,
every layer needs to wait for its predecessors to provide its
inputs, as well as for its successors to provide gradients. This
forward and backward locking of the network caused by the
backpropagation algorithm additionally impedes the efficiency
of hardware accelerator design due to a lack of locality.

In order to eliminate these problems associated with end-
to-end backpropagation of a global, supervised loss function,
we take inspiration from biological learning processes. First,
we remove end-to-end backpropagation by dividing a deep
architecture into consecutive modules that we train greedily
using a local loss per module. Second, we train our model on
unlabeled data by using a self-supervised loss that exploits the
natural order of the data. Overall, this resembles the learning
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processes found in the brain more closely and prevents the
computational issues described above, as we will argue in
Chapter 6.

Based on this, we propose a novel learning approach for
deep neural networks, Greedy InfoMax (GIM). It encodes
unlabeled high-dimensional sequential or spatial data iter-
atively, module by module. All modules are trained with
a self-supervised loss that enforces the individual modules
to maximally preserve the information of their inputs. This
enables the stacked model to collectively create compact rep-
resentations that can be used for downstream tasks. We will
describe this new algorithm in Chapter 3 and demonstrate
its efficacy in Chapter 4. On top of that, we will provide a
thorough discussion of the relevant background knowledge in
Chapter 2. In Chapter 5, we will embed our method into the
current research and compare it to other biologically inspired
alternatives of the backpropagation algorithm.

Overall, our contributions are as follows:

• On audio and image classification tasks, the proposed
Greedy InfoMax algorithm achieves competitive perfor-
mance to its end-to-end trained counterpart, the Contrastive
Predictive Coding (CPC) model from Oord et al. (2018),
despite greedy self-supervised training without a global
objective.

• Our proposal enables asynchronous, decoupled training
of neural networks, allowing for training arbitrarily deep
networks on larger-than-memory input data.

• We show that Mutual Information maximization is espe-
cially suitable for layer-by-layer greedy optimization, and
argue that this reduces the problem of vanishing gradients.



2 Background
In our proposed method, Greedy InfoMax (GIM), we combine
two concepts: the learning of representations from data by Mu-
tual Information maximization, and training a neural network
without end-to-end backpropagation. In this chapter, we will
lay the mathematical foundations for these two concepts and
motivate their usage. After that, we will provide a review on
how they can be inspired biologically.

2.1 Mutual Information Estimation for
Representation Learning

Recently, approaches based on Mutual Information (MI) max-
imization have received increased attention in the machine
learning community, especially in the field of representation
learning (Oord et al., 2018; Hjelm et al., 2019; Hénaff et al.,
2019; Tian et al., 2019; Bachman et al., 2019; Sun et al., 2019).
In this section, we will lay the mathematical foundations for
the relevant information-theoretic concepts and motivate how
this approach can be useful for the creation of representations
from data. The method which we develop in this thesis is
based on one MI maximization approach in particular, namely
Contrastive Predictive Coding (CPC) (Oord et al., 2018), which
we describe at the end of this section.

2.1.1 Mutual Information

Before exploring the applicability of information-theoretic ap-
proaches to representation learning, we will lay the mathemat-
ical foundations for them. These involve the definitions for
Shannon Entropy, Conditional Entropy and Mutual Informa-
tion and some of their core properties.1 1 All definitions and propositions are taken from

Cramer and Fehr (2011).
Note: We will express all definitions and propo-
sitions for discrete random variables. They can
be trivially extended to continuous probability
distributions by replacing the sums with integrals
over the set of possible values.

The Shannon Entropy is a measure for the amount of uncer-
tainty in a random variable. Suppose we are given a probabilis-
tic event A with probability P[A] for some probability measure
P. We can express how surprised we are when event A occurs
using the surprisal value log 1

P[A] . This value describes that
events with high probabilities are less surprising than events
with low probabilities. An event A with probability P[A] = 1,
for example, will result in a surprisal value of zero since its
occurrence can be anticipated entirely. The expected surprisal
value for a random variable X can then indicate the amount
of uncertainty in that variable or, interpreted differently, how
much information is gained by revealing its outcome. This ex-
pected surprisal value of a random variable is more commonly
known as the (Shannon) entropy:
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Definition 2.1: Entropy
Let X be a random variable with image X . Then the entropy
H(X) is defined as

H(X) := E
X

[
log

1
PX(X)

]
(2.1)

= ∑
x∈X

PX(x) log
1

PX(x)
. (2.2)

A constant distribution lower bounds the entropy. As there
is no uncertainty about its outcome, it yields an entropy of
zero. A uniform distribution yields the upper bound. Here, all
outcomes are equally likely, resulting in the highest possible
uncertainty. The following proposition conveys this intuition:

Proposition 2.2
Let X be a random variable with image X . Then it holds that

0 ≤ H(X) ≤ log |X | , (2.3)

where equality on the left side holds iff ∃x ∈ X : PX(x) = 1.
Equality on the right side holds iff ∀x ∈ X : PX(x) = 1

|X | .

For the proof of this proposition, see Appendix A.1. The
probability distribution over the random variable X might
change given an event A. Correspondingly, the entropy of X
can change according to this conditional probability distribu-
tion PX|A. This leads us to the definition of the conditional
entropy:

Definition 2.3: Conditional Entropy
Let X, Z be random variables with images X ,Z . Then the condi-
tional entropy H(X|Z) of X given Z is defined as

H(X|Z) := ∑
z∈Z

PZ(z)H(X|Z = z) (2.4)

= ∑
z∈Z

PZ(z) ∑
x∈X

PX|Z(x|z) log
1

PX|Z(x|z) (2.5)

= ∑
x∈X ,z∈Z

PXZ(x, z) log
PZ(z)

PXZ(x, z)
. (2.6)

Similar to the Shannon entropy, the conditional entropy
can be interpreted as the uncertainty in X when Z is given.
On average, additional information (i.e. knowing Z) can only
decrease our uncertainty about X, which is expressed in the
following proposition:
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Proposition 2.4
Let X, Z be random variables with images X ,Z . Then it holds
that

0 ≤ H(X|Z) ≤ H(X) , (2.7)

where equality on the left side holds iff ∀z ∈ Z , ∃x ∈ X :
PX|Z(x|z) = 1, i.e. X is determined by Z. Equality on the right
side holds iff X and Z are independent.

For the proof of this proposition, see Appendix A.2. Using
the entropy and conditional entropy, we can define the Mutual
Information as follows:

Definition 2.5: Mutual Information
Let X, Z be random variables. Then we can express the Mutual
Information (MI) as

I(X, Z) := H(X)− H(X|Z) , (2.8)

where H(X) is the entropy of X, and H(X|Z) the conditional
entropy of X given Z.

Following the interpretation of the entropy as a measure of
uncertainty, the Mutual Information (MI) can be understood
as the decrease in uncertainty in X when given Z. Thus, MI
expresses the dependence between random variables. We can
rewrite it as follows:

I(X, Z) = ∑
x∈X

PX(x) log
1

PX(x)

− ∑
x∈X ,z∈Z

PXZ(x, z) log
PZ(z)

PXZ(x, z)
(2.9)

= ∑
x∈X ,z∈Z

PXZ(x, z) log
PXZ(x, z)

PX(x)PZ(z)
(2.10)

= KL(PXZ || PXPZ) , (2.11)

where KL(· || ·) denotes the Kullback-Leibler (KL) divergence,
a measure of how different one probability distribution is from
another. This gives us another interpretation of the MI as
the difference between the joint probability distribution of the
random variables X and Z and the product of their marginals.

Following propositions 2.2 and 2.4, MI exhibits the ensuing
properties:

I(X, Z) ≥ 0 (Non-negativity)

I(X, Z) = 0 ⇐⇒ X, Z independent . (2.12)
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Additionally, from PXZ = PZX and PXPZ = PZPX and thus
KL(PXZ || PXPZ) = KL(PZX || PZPX), we get that

I(X, Z) = I(Z, X) . (Symmetry)

Kinney and Atwal (2014) have shown that in contrast to corre-
lation, MI captures non-linear statistical dependencies between
variables and can thus act as a measure of true dependence.
As a result, it provides a practical method for equitably quanti-
fying associations in large datasets.

However, in practice, estimating MI is notoriously difficult.
In most settings, we do not have access to the true data density
PX. This problem can be circumvented by using a stochas-
tic approximation, assuming we have access to a sufficiently
large empirical distribution P̂X. The second arising problem,
unfortunately, is much harder to circumvent: computing the
marginal PZ = ∑x∈X PXZ(x, z) is often intractable, especially
in high-dimensional spaces. Therefore, in practice, one usually
makes use of tractable lower and upper bounds. These allow
for optimizing the MI even when it is intractable. When one
tries to maximize the MI, for instance, this can be achieved
implicitly by maximizing the tractable lower bound.

2.1.2 Mutual Information Estimation for Representation
Learning

Given that we can maximize the MI between two random
variables, how does this help us with the creation of better
representations of data? In order to answer this question, we
will first describe the general setup of representation learn-
ing. Then, we will develop an intuition on how information-
theoretic approaches can help us to create the desired features.

Since no clear objective for representation learning has been
identified yet, we will only provide an intuitive description of
the task setting: given unlabeled input data X, learn a function
g that maps the input into some, typically lower-dimensional
space. The created representations Z are considered to be better
when they help to achieve higher performances on supervised
downstream tasks or to solve these tasks more efficiently, e.g.
by requiring less annotated data. However, the target task
might be unknown a priori or might change throughout the
employment of the created representations. Thus, in order to
create useful features, Bengio et al. (2013) argue that one should
disentangle as many explanatory factors as possible while
discarding as little information about the input as practical.

This is where information-theoretic approaches lend them-
selves naturally for representation learning. By maximizing
the MI between the input and the output of a model, we can
ensure that as little information about the input is discarded
as possible. This approach is inspired by the InfoMax princi-
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ple (Linsker, 1988) and has first been applied to unsupervised
representation learning by Bridle et al. (1992).

However, two fundamental problems arise when maximiz-
ing the MI between the input and the output of a model. The
first problem is that the MI I(X, Z) is at its maximum when
X = Z and thus H(X|Z) = 0, i.e. when the output Z of an
algorithm is equal to its input X. Then, all information of the
input is present in the representation, but arguably no mean-
ingful transformation has been applied. Consequently, we can
not assume that the InfoMax principle inherently pushes for a
disentangled representation.

The second fundamental problem of applying information
theory to representation learning: when measuring the MI
between two variables, no value judgments are made. Redun-
dancy is discounted, but the MI cannot discern between useful
and irrelevant information. According to information theory, a
maximally unpredictable signal is the most informative one2. 2 This follows from the interpretation of entropy

as a measure of how informative the outcome of a
random experiment is. We gain the most informa-
tion when the entropy is at its maximum, which
is reached by a uniformly distributed random
variable (see Proposition 2.2)

In contrast, random disturbances in the data are most likely to
be useless for representation learning tasks and should usually
be discarded as noise.

Krause et al. (2010) have shown how these theoretical restric-
tions can indeed lead to degenerate solutions in practice. They
train a probabilistic classifier without supervision by maximiz-
ing the MI between the input X and the output Z, which they
interpret as a probability distribution over a discrete random
variable (the class label) Y. They found that a classifier trained
with the InfoMax objective tends to fragment the output space
into a large number of categories, essentially classifying each
data point into its own category.

Consequentially, some regularization is necessary to create
useful representations using information-theoretic approaches.
In the work mentioned above (Krause et al., 2010), they sug-
gest penalizing complex decision boundaries in order to yield
sensible clustering solutions.

A more generic solution exploits the structure that is present
in the input data. Becker (1996) took a first step in this direction
proposing to extract features that are coherent across inputs.
Here, “coherence” describes that parts of an input can be pre-
dicted by other parts. This coherence may arise over different
sensory channels, e.g. when we see a cup of coffee, smell and
taste its aroma and feel the warm cup in our hands. Alterna-
tively, we may exhibit coherence of a signal over time. These
temporal coherences were subsequently coined slow features
(Wiskott and Sejnowski, 2002). To illustrate: a patch of a few
milliseconds of raw speech utterances shares information with
neighboring patches such as the speaker identity, emotion, and
phonemes, while it does not share these with random patches
drawn from other utterances. Similarly, a small patch from a
natural image shares many aspects with neighboring patches
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such as the depicted object or lighting conditions and thus
exhibits spatial coherence.

These coherences can be exploited for extracting useful
features from data. Suppose we are given an input X and
let X(1), X(2) be coherent parts of this input. Then we can
employ encoders g1, g2 which possible share parameters and
optimize them with the following objective:

max
g1∈G1,g2∈G2

I(g1(X(1)), g2(X(2))) , (2.13)

where G1,G2 describe function classes that can specify struc-
tural constraints of the encoders. Thus, our objective for rep-
resentation learning becomes to maximize the MI between
representations of coherent parts of the input.

By applying the data processing inequality3 multiple times, 3 Data Processing Inequality
Let X → Y → Z be a Markov Chain (i.e. PZ|XY =
PZ|Y). Then it holds that I(X, Y) ≥ I(X, Z).

one can show that (Tschannen et al., 2019):

I(g1(X(1)), g2(X(2))) ≤ I(X; g1(X(1)), g2(X(2))) . (2.14)

Thus, Equation (2.13) maximizes a lower bound of the InfoMax
objective (maxg∈G I(X, g(X)) = max I(X, Z)). Nonetheless, it
manages to resolve the two aforementioned problems associ-
ated with this objective. For one, g1 and g2 have to extract
and disentangle features that are present in both X(1) and X(2),
such that their encodings become maximally informative of
each other. This new objective also resolves the second prob-
lem, since random noise is most likely to get filtered as an
uninformative part of the input. An additional advantage of
this approach is that the representations g1(X(1)) and g2(X(2))

are typically lower-dimensional than the original input X and
as a result, the MI becomes easier to estimate.

As argued before, there are many possibilities for coher-
ence to arise in data and consequentially, there are various
approaches based on Equation (2.13) that exploit different
modalities and aspects of the data. Becker (1996), for example,
propose to extract coherent features from different receptive
fields (X(1), X(2)) by maximizing the MI between the outputs of
different network modules (g1, g2) and show that this method
is capable of extracting higher-order features from data. More
recently, Hjelm et al. (2019) demonstrate that exploiting the
spatial coherence in natural images by applying g1 on the
entire image X(1) to extract global features and g2 on image
patches X(2) to extract local features can be highly effective for
representation learning.

Recent work (Tschannen et al., 2019) suggests that the suc-
cess of these MI maximization methods might only be loosely
attributed to the properties of MI itself. Instead, they provide
an alternative interpretation based on the triplet loss known
from deep metric learning. In this setting, one tries to cre-
ate representations such that the distance between g1(X(1))
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and g2(X(2)) is smaller than the distance between g1(X(1))

and some representation of a non-coherent part of the input
g(X(j)). Nonetheless, the goal remains similar, namely to cre-
ate representations that preserve the coherences present in the
input. Since MI maximization provides an intuitive interpreta-
tion of this goal, we continue to use the information-theoretic
framework.

The method that we develop in this thesis is based on Con-
trastive Predictive Coding (Oord et al., 2018). This represen-
tation learning approach exploits the temporal coherence of
sequential data. It extracts useful features by maximizing the
MI between the extracted representations of temporally nearby
patches. Thus, X(1) corresponds to a patch at time t and X(2)

to future patches at t + k. Next, we will provide a more in-
depth description of this self-supervised end-to-end training
approach.

2.1.3 Contrastive Predictive Coding and the InfoNCE loss
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Figure 2.1: Contrastive Predictive Coding (CPC)
trains the two submodels genc and gar , as well
as the classifier fk, by contrasting temporally
nearby representation pairs (i.e. positive sam-
ples (zt+k , ct)) against random pairs (i.e. negative
samples (zj, ct)).

Contrastive Predictive Coding (CPC) works by combining
two submodels. As depicted in Figure 2.1, it first processes
the sequential input signal x using a deep encoding model
genc(xt) = zt. Additionally, it produces a representation ct

that aggregates the information of all patches up to time-step
t using an autoregressive model gar(z0:t) = ct. Then, the MI
between the extracted representations zt+k and ct of tempo-
rally nearby patches is maximized by employing a specifically
designed global probabilistic loss: Following the principles of
Noise Contrastive Estimation (NCE) (Gutmann and Hyvärinen,
2010), CPC takes a bag X = {zt+k, zj1 , zj2 , ...zjN−1} for each de-
lay k, with one “positive sample” zt+k which is the encoding of
the input that follows k time-steps after ct, and N− 1 “negative
samples” zjn which are uniformly drawn from all available
encoded input sequences.

Each pair of encodings (zj, ct) is scored using a function
f (·) to predict how likely it is that the given zj is the positive
sample zt+k. In practice, Oord et al. (2018) use a log-bilinear
model

fk(zj, ct) = exp
(

zT
j Wkct

)
, (2.15)

with a unique weight-matrix Wk for each k-steps-ahead pre-
diction. The scores from f (·) are used to predict which sample
in the bag X is correct, leading to the InfoNCE loss:

LN = −∑
k

E
X

[
log

fk(zt+k, ct)

∑zj∈X fk(zj, ct)

]
. (2.16)

This loss is used to optimize both the encoding model genc

and the auto-regressive model gar to extract the features that
are consistent over neighboring patches but which diverge
between random pairs of patches. At the same time, the scoring
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model fk learns to use those features to classify the matching
pair correctly. In practice, the loss is trained using stochastic
gradient descent with mini-batches drawn from a large dataset
of sequences, and negative samples drawn uniformly from all
sequences in the minibatch.

As demonstrated in the appendix of Oord et al. (2018) and
proven by Poole et al. (2018), −LN can be reformulated as a
lower bound on the MI I(zt+k, ct). Intuitively, the connection
between −LN and the MI can be made by the formulation of
MI as I(X, Z) = KL(PXZ || PXPZ) and the following idea: If a
classifier can distinguish between samples from the joint PXZ

and those from the marginal PXPZ, than X and Z have a high
MI. In the setting of CPC, this implies that if the classifier fk

can distinguish the positive pair of encodings (zt+k, ct) from
the negative pairs (zj, ct), than zt+k and ct have a high MI.

Minimizing the loss LN thus optimizes the MI between
consecutive patch representations I(zt+k, ct), which in itself
lower bounds the MI I(xt+k, ct) between the future input xt+k

and the current representation ct.4

4 This argumentation is equivalent to the bound
I(g1(X(1)), g2(X(2))) ≤ I(X; g1(X(1)), g2(X(2)))
proven by Tschannen et al. (2019) mentioned
above.

2.2 Backpropagation and its Biological
Plausibility

Recent state of the art results in various areas such as computer
vision (Krizhevsky et al., 2012; Szegedy et al., 2015; He et al.,
2016a), natural language understanding (Devlin et al., 2019;
Yang et al., 2019) and reinforcement learning (Silver et al.,
2016; Vinyals et al., 2019) were achieved with the help of deep
learning. They all rely on ANNs that are optimized using
backpropagation.

Originally, ANNs were biologically inspired, and they have
shown to develop representations similar to those found in
the brain areas involved in similar tasks, such as Gabor-like
filters in the early visual system. Backpropagation’s biological
plausibility, on the other hand, is much more debatable (Crick,
1989; Whittington and Bogacz, 2019). In this section, we will
first provide a short description of ANNs and how to opti-
mize their parameters using the backpropagation algorithm.
Then, we will depict some of its computational disadvantages
before discussing aspects of this learning algorithm that are
biologically implausible. Finally, we will include a short dis-
cussion on Backpropagation Through Time. This algorithm
is typically used for optimizing the parameters in Recurrent
Neural Networks, which are ANNs specialized for sequential
input data.

2.2.1 Backpropagation in Artificial Neural Networks

Artificial Neural Networks (ANNs) are parametric, non-linear
representation learning functions. They are typically hierarchi-
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cal, such that the model can be split into a number of layers
1, . . . , L. Each layer applies a non-linear operation on its input
and propagates its result to the following layer. We can express
this more formally, such that given an input x, an ANN does
the following computation:

oL(x; W1, . . . , WL) = hL(hL−1(. . . h1(x, W1) . . . , WL−1), WL) ,
(2.17)

where W l describes the parameters for layer l and hl(ol−1, W l)

is a differentiable, non-linear function on the layer-input ol−1,
which is either the output of the previous layer or the input to
the network (o0 = x).

In the following, without loss of generality, we will focus
on the most elementary type of a neural network using only
fully-connected layers. This allows us to split the calculations
of each layer into separate units, commonly described as neu-
rons. Formally, the calculation for a neuron j in layer l can be
described as

zl
j =

n

∑
k=1

wl
kjo

l−1
k (2.18)

ol
j = ϕl(zl

j) , (2.19)

where ϕl is a non-linear, differentiable activation function,
ol−1

k the output of neuron k in the previous layer l − 1 (with
neurons k ∈ {1, . . . , n}) and wl

kj the weight for the connection
from neuron k in layer l − 1 to neuron j in layer l.

When using ANNs in a supervised setting, the goal is to
find the optimal parameters W∗ such that given inputs X, the
network produces outputs that are close to some target values
Y. In order to do so, one formalizes the discrepancy between
the output of the network and the targets as the loss L, which
we try to minimize:

W∗ ← arg min
W

∑
(x,y)⊆{X,Y}

L(y, oL(x; W)) , (2.20)

where W is the concatenation of all weight matrices
W1, . . . , WL.

Backpropagation (Rumelhart et al., 1985) is the algorithm
most commonly used to optimize the parameters in ANNs
based on the loss L. In order to effectively enable the network
to produce better outputs, all weights W1, . . . , WL within the
architecture need to be adjusted, as they all influence the output
of the final layer. Backpropagation provides a theoretically
grounded approach to calculate the necessary weight changes.
It assigns credit to the individual weights throughout all layers
of the network describing which weights need to be adjusted,
in which direction and by how much.

For calculating the weight changes, backpropagation makes
use of the gradients of the loss function. Generally, gradients
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indicate in which direction one would have to change the
parameters of a function (here, the weights) in order to achieve
the steepest decrease in the function value (here, the loss).
Thus, backpropagation makes use of gradient descent, i.e. it
takes steps proportional to the negative of the gradients for
finding a (local) minimum of the loss. The main insight of
backpropagation is then to make use of the chain rule in order
to calculate the gradients with respect to the parameters of the
inner layers of the network. Going back to the example of a
network with fully-connected layers, backpropagation provides
the following update rules for all weights wij of the network
(discarding the layer index l here for brevity):

∆wij = −η
∂L

∂wij
(2.21)

= −ηoiδj (2.22)

where

δj =


∂L
∂oj

∂ϕ(zj)

∂zj
if j is an output neuron(

∑m∈M wjmδm
) ∂ϕ(zj)

∂zj
if j is an inner neuron

(2.23)

where M contains all the neurons receiving inputs from neu-
ron j. See Appendix A.3 for the derivation of these update
rules. Thus, the update of the weight wij depends on three
factors (Equation (2.22)): the learning rate η, the input from the
previous neuron oi and an error term δj. This error term needs
to be calculated differently depending on whether j is an inner
neuron or an output neuron (Equation (2.23)). If it is an output
neuron, δj is the product of the derivative of the loss function
with respect to the output of the neuron j and the derivate of
the activation function ϕ with respect to its input. If j is an
inner neuron, its influence on the final loss is more intricate
as it may influence the behavior of a number of downstream
neurons, including several output neurons. As a result, δj is
more involved: it takes a sum of all the error terms δm of the
neurons that receive inputs from neuron j weighted by their
respective connection strengths wjm and multiplies this sum
with the derivate of the activation function ϕ.

2.2.2 Computational Disadvantages of Backpropagation

Although empirically proven to be highly effective, the back-
propagation algorithm suffers from several practical disadvan-
tages:

Memory Overhead In a naïve implementation, it creates a sub-
stantial memory overhead as the entire computational graph,
including all parameters, activations, and gradients, needs to
fit in a processing unit’s working memory. Currently known
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solutions to address this require recomputation of intermediate
outputs (Salimans and Bulatov, 2017) or expensive reversible
layers (Jacobsen et al., 2018). This hinders the application
of deep learning models to high-dimensional input data that
surpasses current memory constraints.

Synchronous Training Optimizing a network using backprop-
agation results in several forms of locking (Jaderberg et al.,
2017). On the one hand, it is forward locked, since every layer
needs to wait for its predecessors to provide its inputs. On
the other hand, it is backward locked, as no layer can update
its parameters before its successors have provided it with the
necessary gradients. Thus, end-to-end training with backprop-
agation does not allow for an exact way of asynchronously
optimizing individual layers. This inhibits the efficiency of
hardware accelerator design due to a lack of locality.

Vanishing Gradients When training a neural network with L
layers using backpropagation, the weight update of the lower
layers is computed using the chain rule, effectively multiplying
with the gradients of higher layer’s activation functions up to
L times. Typically, these gradients range between zero and one,
which can thus have the effect of exponentially decreasing the
size of the gradients with which to update the lower layers.
The resulting vanishing gradients can then fail to update the
weights of the lower layers appropriately, impeding overall
network performance. There are several possible solutions
to this problem, such as layer-wise pretraining (Bengio et al.,
2007), the usage of ReLU nonlinearities (Krizhevsky et al., 2012),
residual networks (He et al., 2016a) and LSTMs (Hochreiter
and Schmidhuber, 1997) for recurrent networks.

2.2.3 Biologically Implausible Aspects of Backpropagation

In addition to these computational disadvantages, backpropa-
gation has several aspects that reduce its biological plausibility:

Local Error Representation Generally, biological synapses are
adjusted based on local signals, i.e. based on signals from the
neurons that they are immediately connected to (Caporale and
Dan, 2008). This is in stark contrast to the weight updates
in backpropagation which depend on gradient information
originating from a global error calculated in the final layer (see
Equation (2.23)). Despite some evidence for top-down connec-
tions in the brain, there does not appear to be a comparable
global objective that is optimized by backpropagating error
signals in such a way (Crick, 1989). Early theories proposed
that the brain might nonetheless optimize a global error that
is signaled to all neurons using neuromodulators (Mazzoni
et al., 1991; Williams, 1992). However, such an approach is
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inherently slow and does not scale with the size of the net-
work (Werfel et al., 2004). More recent work has shown that
backpropagation may be approximated in more biologically
plausible ways by computing weight updates based on local in-
formation (Whittington and Bogacz, 2017; Scellier and Bengio,
2017). Nevertheless, these approaches still rely on supervised
learning and thus require the representation of a global target
value. Even if the brain were to receive a target value for each
of its inputs, it remains an unclear how this value would be
implemented.

Weight Symmetry Backpropagation works by first forward-
propagating a given input through a network, comparing the
produced output to the target value, and updating the weights
by backpropagating the gradients of the loss. In this process,
the same weights are used twice: once in the forward pass
when they are applied to the input and once in the backward
pass to scale the backpropagating gradients according to the
connection strengths. The weights thus need to be symmetrical.
However, such bidirectional connections are only sparingly
present in the brain (Song et al., 2005). This leaves the question
of how the brain would be able to implement backpropaga-
tion if it cannot appropriately propagate the errors back to the
neurons that caused them. Lillicrap and Santoro (2019); Xiao
et al. (2019) proposed a possible solution by showing that back-
propagation can still work when the backward-pass makes use
of random weights. Nonetheless, a related problem remains,
namely that backpropagation in the brain would require a
distinct mechanism for propagating gradients, which allows
it to backpropagate its errors without influencing the ongoing
neural activity.

Other Aspects In addition to the two aforementioned critique
points on the biological plausibility of backpropagation, there
are several aspects regarding the modeling and optimization
process of ANNs themselves that do not correspond to the
biological brain. First of all, biological neurons communicate
using binary values, better known as spikes, while artificial
neurons typically send continuous outputs. Secondly, most
ANNs make use of supervised training, i.e. they are optimized
on datasets in which every input has a corresponding target
value. In addition to that, the number of required input-label
pairs is often enormous. In contrast, humans often learn new
concepts using only a few samples (Gopnik et al., 1999).

Another critical point to note is that the ANNs considered
so far work on non-temporal inputs and targets. The brain,
on the other side, receives a constant stream of inputs and
thus needs to work on temporal sequences. There are neural
networks that take sequential inputs and model temporal de-
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pendencies, named Recurrent Neural Networks (RNNs). They
are usually trained using Backpropagation Through Time for
which there is even less evidence that a similar process may be
implemented in the brain. We will provide a short discussion
on this algorithm in the next section.

2.2.4 Additional Notes on Backpropagation Through Time

Backpropagation Through Time (BPTT) works by unfolding
a neural network over time while keeping the parameters
constant. Then, the weights are updated by applying back-
propagation on the unfolded network. As a result, it exhibits
the same biologically implausible aspects as backpropagation
itself. On top of that, by unfolding the network over time for
every sequence to be learned, it adds two major biologically
implausible aspects.

In a standard ANN, activation values need to be stored
during a single forward/backward pass, i.e. each neuron needs
to save its own state until all weights are updated. When using
BPTT however, each neuron needs to store its activations from
all points in the past over which the network is unfolded, i.e.
each neuron needs to store its own history of states (Lillicrap
and Santoro, 2019).

The second criticism is that BPTT is not suitable for online
learning. Instead, it requires a network to forward-pass the
entire input sequence, unfold the resulting network and back-
propagate errors over the unfolded network, before weights
can be updated and before a new sequence can be processed.
While there is some evidence for memory replay in the brain
(Wilson and McNaughton, 1994; Foster and Wilson, 2006), it
mainly learns online.

2.3 Neuroscientific Background and Inspi-
ration

Given these biologically implausible aspects of backpropaga-
tion, the brain likely adjusts its synaptic connections using
different mechanisms. In this section, we will provide a review
of known learning processes in the brain, focusing specifically
on theories connected to MI and layer-wise learning based on
prediction errors.

We start our review at the most fine-grained level of learning:
the adjustment of individual synapses. Hebb (1949) proposed
an early theory for synaptic learning that is still influential
today. He stated that “When an axon of cell A is near enough
to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.” This synaptic learning rule is known
as Hebbian Learning and commonly abbreviated as “neurons
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that fire together, wire together”. Many studies provide strong
experimental support for this theory, finding synaptic changes
reflecting this learning rule in diverse neural circuits, such
as in the hippocampus (Bliss and Lømo, 1973) and various
neocortical areas (Artola and Singer, 1993; Iriki et al., 1989;
Hirsch et al., 1992).

Figure 2.2: Temporal dependency of synaptic
weight changes reflecting the theory of Spike-
Time Dependent Plasticity (STDP). When the post-
synaptic spike occurs after the pre-synaptic one
(∆t > 0), the synaptic connection is strengthened.
When the spiking order is reversed (∆t < 0), con-
nection strengths are weakened. Data points re-
flect the behavior of hippocampal cells and were
taken from Bi and Poo (1998), the figure is taken
from Asl (2018).

In addition to Hebbian learning which focuses on the corre-
lation between pre- and post-synaptic spikes, several studies
pointed out the importance of the temporal order in which
these spikes occur (Levy and Steward, 1983; Gustafsson et al.,
1987; Debanne et al., 1994). This temporal dependency is cap-
tured in the synaptic learning theory of Spike-Time Dependent
Plasticity (STDP) (Caporale and Dan, 2008). It postulates that
pre-synaptic activity that precedes post-synaptic firing can in-
duce a persistent strengthening of the involved synapse while
reversing the temporal order can cause the synapse to weaken
(see Figure 2.2). Many experimental studies support this theory
and also delineate the critical time window to be within tens
of milliseconds (Bi and Poo, 2001; Debanne et al., 1998; Magee
and Johnston, 1997).

While these theories governing the synaptic plasticity in the
brain are widely accepted, there is a lot more debate about
the more abstract learning concepts that they implement. One
line of work tries to connect them with information theory. An
early step in this direction was taken by Linsker (1988), who
developed the InfoMax principle. It theorizes that the brain
learns to process its perceptions by maximally preserving the
information of the input activities in each layer. According to
his theory, a Hebb-type rule may induce this self-organizing
behavior. Linsker also showed that his approach can success-
fully model the emergence of oriented and center-surround
receptive fields in the primary visual cortex of mammals. Fur-
ther studies showed that MI maximization can also model
other early stages of perception, such as the gain control in
the blowfly’s eye (Laughlin, 1987), and properties of the mam-
malian retina’s receptive fields (Atick and Redlich, 1990). More
recently, Toyoizumi et al. (2005) developed a learning rule that
maximizes the MI between the input and the output of a layer
based on the rules of Spike-Time Dependent Plasticity (STDP).

Overall, neurons learn primarily based on local information.
Some theories suggest that this local information is generated
as the brain tries to predict its future inputs. The resulting
prediction error could then be used for learning (Friston, 2010).
Rao and Ballard (1999) indicate that this process may happen
at each layer within the brain. Their theory named Predictive
Coding describes how each level in a hierarchical network
attempts to predict the activity of the next lower level. This
prediction is subtracted from the bottom-up sensory represen-
tation, which results in an error that is sent back to the higher
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level. There, the error is used to correct the estimate of future
bottom-up sensory signals. Rao and Ballard (1999) showed
that a three-level hierarchical network constructed according
to this theory and trained on several thousand natural image
patches could elicit some extra-classical receptive field effects
with similar properties to those found in the visual cortex.

Our proposal draws motivation from these theories, result-
ing in a method that learns to preserve the information of each
layer’s input by creating representations that are predictive of
future inputs.



3 Greedy InfoMax
In this thesis, we pose the question if we can effectively opti-
mize the Mutual Information (MI) between representations at
each layer of a model in isolation, enjoying the many practical
benefits that greedy training (decoupled, isolated training of
parts of a model) provides. In doing so, we introduce a novel
approach for self-supervised representation learning: Greedy
InfoMax (GIM).

As depicted on the left side of Figure 3.1, we take a conven-
tional deep learning architecture and divide it by depth into a
stack of M modules. This decoupling can happen at the indi-
vidual layer level or, for example, at the level of blocks found in
residual networks (He et al., 2016b). Rather than training this
model end-to-end, we prevent gradients from flowing between
modules and employ a local self-supervised loss instead.

As shown on the right side of Figure 3.1, each encoding
module gm

enc within our architecture maps the output from the
previous module zm−1

t to an encoding

zm
t = gm

enc(GradientBlock(zm−1
t )) . (3.1)

In order to restrict modules to train locally, gradient flow
between modules is inhibited. This is formulated using the
gradient blocking operator defined as:

GradientBlock(x) , x (3.2)

∇GradientBlock(x) , 0 . (3.3)

Oord et al. (2018) propose to use the output of an autoregres-
sive model gar(z0:t) = ct to contrast against future predictions
zt+k. However, our preliminary results showed that this did not
improve results if applied at every module in the stack. Also,
optimizing it requires Backpropagation Through Time (BPTT),
which is considered biologically implausible. Therefore, we
train each module gm

enc using the following module-local In-
foNCE loss:

f m
k (zm

t+k, zm
t ) = exp

(
zm

t+k
TWm

k zm
t

)
(3.4)

Lm
N = −∑

k
E
X

[
log

f m
k (zm

t+k, zm
t )

∑zm
j ∈X f m

k (zm
j , zm

t )

]
. (3.5)

After convergence of all modules, the scoring functions f m
k (·)

can be discarded, leaving a conventional feed-forward neural
network architecture that extracts features zM

t for downstream
tasks:

zM
t = gM

enc

(
gM−1

enc

(
· · · g1

enc (xt)
))

. (3.6)
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Figure 3.1: The Greedy InfoMax Learning Ap-
proach. (Left) For the self-supervised learning of
representations, we stack a number of modules
through which the input is forward-propagated
in the usual way, but gradients do not propa-
gate backward. Instead, every module is trained
greedily using a local loss. (Right) Every encod-
ing module maps its inputs zm−1

t at time-step
t to gm

enc(GradientBlock(zm−1
t )) = zm

t , which is
used as the input for the following module. The
InfoNCE objective is used for its greedy optimiza-
tion. This loss is calculated by contrasting the
predictions of a module for its future represen-
tations zm

t+k against negative samples zm
j , which

enforces each module to maximally preserve the
information of its inputs. We optionally employ
an additional autoregressive module gar , which
is not depicted here.

For some downstream tasks, a broad context is essential.
For example, in speech recognition, the receptive field of zM

t
might not carry the full information required to distinguish
phonetic structures. To provide this context, we reintroduce the
autoregressive model gar as an independent module that we
optionally append to the stack of encoding modules, resulting
in a context-aggregate representation cM

t :

cM
t = gM

ar

(
GradientBlock

(
zM−1

0:t

))
. (3.7)

We train this autoregressive module independently using the
module-local InfoNCE loss with the following adjusted scoring
function:

f M
k (zM−1

t+k , cM
t ) = exp

(
GradientBlock

(
zM−1

t+k

)T
WM

k cM
t

)
.

(3.8)

3.1 Mutual Information Maximization
Similarly to the InfoNCE loss in Equation (2.16), our module-
local InfoNCE loss in Equation (3.5) maximizes a lower bound
on the MI I(zm

t+k, zm
t ) between nearby patch representations,

encouraging the extraction of slow features.
Additionally, it follows from Oord et al. (2018), that the

module-local InfoNCE loss also maximizes the lower bound of
the MI I(zm−1

t+k , zm
t ) between the future input to a module and

its current representation. This can be seen as a maximization
of the MI between the input and the output of a module, subject
to the constraint of temporal disparity. Thus, the InfoNCE loss
can successfully enforce each module to preserve the informa-
tion of its inputs, while providing the necessary regularization
(Krause et al., 2010; Hu et al., 2017) for circumventing degen-
erate solutions. These factors contribute to ensuring that the
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greedily optimized modules provide meaningful inputs to their
successors and that the network as a whole provides useful
features for downstream tasks without the use of a global error
signal.

3.2 Practical benefits
Training a neural network greedily with module-local losses
and without end-to-end backpropagation gives rise to several
practical benefits. Most importantly, when applying GIM to
high-dimensional inputs, we can optimize each module in
sequence to decrease the memory costs during training. In the
most memory-constrained scenario, individual modules can
be trained, frozen, and their outputs stored as a dataset for the
next module to train on. This effectively removes the depth of
the network as a factor of the memory complexity.

Additionally, GIM provides a highly flexible framework for
the training of neural networks. It enables the training of indi-
vidual parts of an architecture at varying update frequencies.
When a higher level of abstraction is needed, GIM allows for
adding new modules on top at any moment of the optimization
process without having to fine-tune previous results.

Another benefit to note is that GIM can circumvent a poten-
tial cause of vanishing gradients. In an end-to-end optimized
neural network with L layers, the gradients of the lower layers
are computed by application of the chain rule, effectively multi-
plying with the gradients of higher layer’s activation functions
up to L times. With typical values of these gradients ranging
from zero to one, this has the effect of exponentially decreasing
the size of the gradients to the lower layers by a factor of L.
When training the network greedily with GIM, this factor is
reduced significantly, as we do not backpropagate through
the entire stack of network layers. Instead, gradients are only
propagated through the layers that make up one individually
trainable subpart (i.e. a module) of the network. As a result,
GIM provides a natural way to reduce the risk of vanishing
gradients.

Last but not least, GIM allows for training models on larger-
than-memory input data with architectures that would other-
wise exceed memory limitations. Leveraging the conventional
pooling and strided layers found in common network architec-
tures, we can start with small patches of the input, greedily
train the first module, extract the now compressed represen-
tation spanning larger windows of the input and train the
following module using these.



4 Experiments
We test the applicability of the proposed Greedy InfoMax (GIM)
approach to the visual and audio domain. In both settings, a
feature-extraction model is divided by depth into modules and
trained without labels using GIM. The representations created
by the final (frozen) module are then used as the input for a
linear classifier. Its accuracy scores provide us with a proxy for
the quality and generalizability of the representations created
by the self-supervised model.

4.1 Vision
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Figure 4.1: We impose a top-down ordering on
images by predicting the encodings of patches in
subsequent rows of the same column.

To apply Greedy InfoMax to natural images, we impose a top-
down ordering on 2D images. We follow Oord et al. (2018);
Hénaff et al. (2019) by extracting a grid of partly-overlapping
patches from the image to restrict the receptive fields of the rep-
resentations (Figure 4.1). First, we encode each patch xi,j in row
i and column j of this grid into its corresponding representa-
tion zi,j. Then, we predict up to K encoded patches zi+K,j in the
rows underneath, skipping the first overlapping patch zi+1,j.
Random contrastive samples are drawn with replacement from
all samples available inside a batch, using 16 contrastive sam-
ples for each evaluation of the loss. No autoregressive model
gar is used for GIM in this regime.

4.1.1 Experimental Details

We focus on the STL-10 dataset (Coates et al., 2011), an image
recognition dataset for developing unsupervised feature learn-
ing algorithms. It consists of 100,000 unlabeled images, which
we use for the self-supervised training of our GIM model. The
remaining 5,000 labeled training images and 800 testing images
containing ten classes are employed for examining the useful-
ness of our learned representations for image classification
tasks.

For data augmentation, we take random 64× 64 crops from
the 96× 96 images, flip them horizontally with probability 0.5
and convert them to grayscale. We divide each image of 64× 64
pixels into a total of 7× 7 local patches, each of size 16× 16
with 8 pixels overlap. The patches are encoded by a ResNet-50

v2 model (He et al., 2016b) without batch normalization (Ioffe
and Szegedy, 2015) which we split into three gradient-isolated
modules. In our main experiment, we train these modules in
sync and with a coherent learning rate. After convergence, a lin-
ear classifier is trained – without finetuning the representations
– using a conventional softmax activation and cross-entropy
loss. This linear classifier accepts the patch representations zM

i,j
from the final module and first average-pools these, resulting in
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Method Accuracy

Deep InfoMax (Hjelm et al., 2019) 78.2%
Predsim (Nøkland and Eidnes, 2019) 80.8%

Randomly initialized 27.0%
Supervised 71.4%
Greedy Supervised 65.2%
CPC 82.1%

Greedy InfoMax (GIM) 82.0%

Table 4.1: STL-10 classification results on the test
set. The GIM model performs virtually the same
as the CPC model, despite a lack of end-to-end
backpropagation and without the use of a global
objective.

a single vector representation zM. Remaining implementation
details are presented in Appendix B.1.

4.1.2 Results

As shown in Table 4.1, GIM performs as well as the end-to-end
trained CPC counterpart, despite its unsupervised features be-
ing optimized greedily without any backpropagation between
modules. An equivalent randomly initialized feature extraction
model exhibits poor performance, showing that GIM extracts
useful features. Training the feature extraction model end-
to-end and fully supervised performs worse, likely due to the
small size of the annotated dataset resulting in overfitting. Al-
though regularization techniques (DeVries and Taylor, 2017)
may be able to circumvent this, the self-supervised methods
do not appear to require regularization as they benefit from
the full unlabeled dataset. Using a greedy supervised approach
for training the feature model impedes performance. Here, we
train modules separately as done with the GIM model, but use
a supervised loss function instead. This result suggests that
MI maximization is unique in its direct applicability to greedy
optimization.

In comparison with the recently proposed Deep InfoMax
model from Hjelm et al. (2019) the InfoNCE-based methods
come out favorably. Deep InfoMax uses a slightly different
end-to-end MI maximization approach, AlexNet (Krizhevsky
et al., 2012) as their feature-extraction model, and an additional
hidden layer in the supervised classification model. Finally, we
see that we outperform the state-of-the-art biologically inspired
Predsim model from Nøkland and Eidnes (2019). This approach
trains individual layers of a VGG like architecture (Simonyan
and Zisserman, 2014) using two supervised loss functions.

4.1.3 Iterative Training

GIM provides a significant advantage arising from the greedy
nature of optimization: it can effectively remove the depth
of the network as a factor of the memory complexity. Every
module is trained with its own local loss function that depends
solely on this particular module’s inputs and outputs. This
greedy optimization enables us to decouple the training of the
individual parts of the network. In the most memory-restricted
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Method GPU memory

Supervised 6.3 GB
Greedy Supervised - 1st module 2.5 GB
CPC 7.7 GB

GIM - 1st module 2.5 GB
GIM - all modules 7.0 GB

Table 4.2: GPU memory consumption during
training. All compared models consist of the
ResNet-50 v2 architecture and only differ in their
respective training approach. GIM allows for
memory-efficient greedy training.

setting, we can train one module after another, saving the
previous module’s output as a dataset for the next module to
train on. As a result, we can train the entire network while only
having to fit one individual module with its corresponding
inputs, outputs, and gradients into the GPU memory at a time.

Measuring the allocated GPU memory of the previously
studied models during training (Table 4.2), indicates that this
theoretical benefit holds in practice as well. After splitting the
architecture into three separately trainable modules, we can
reduce the GPU memory consumption by a factor of 2.8 by
training the modules individually (GIM - 1st module) compared
to training them simultaneously (GIM - all modules). On top
of this benefit from training modules individually, training
all modules simultaneously with GIM reduces the memory
footprint by approximately 10% in comparison to CPC as it
does not employ an autoregressive PixelCNN (Van den Oord
et al., 2016) model on top of the encoding ResNet architecture.

Now, the question remains whether asynchronous training
influences the quality of the representations created by GIM. In
order to test this, we train a second GIM model iteratively. In
this setting, we train the lowest module until convergence and
fix its parameters before training the next module on top of it
and repeat this process until all modules have been trained. Af-
ter training each module for 300 epochs, this iteratively trained
model achieves an accuracy of 79.8% on the image classification
downstream task. Thus, the performance declines slightly in
comparison to the simultaneously trained model, as previously
shown in Table 4.1 with 82.0% accuracy.

In order to examine potential causes for this difference in
performance, we plot the training curves of the two models in
Figure 4.2. As expected, the learning curves of the first module
(Figure 4.2a) reflect that there is no difference in its training in
the two models. Modules two and three (Figures 4.2b and 4.2c),
however, reveal two differences between the iteratively and
the simultaneously trained model. First, the iteratively trained
modules start with lower losses. This can be explained by
them receiving clean inputs from their already converged pre-
decessors from the beginning of their training. Second, the
iteratively trained modules show a larger divergence between
the training and validation loss, indicating stronger overfitting.
We can thus conclude that the noisier inputs that the higher
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Figure 4.2: Training curves for optimizing all mod-
ules simultaneously (blue) or iteratively, one at a
time (red). While there is no difference in the
training methods for the first module (a), later
modules (b, c) start out with a lower loss and
tend to overfit more when trained iteratively on
top of already converged modules.

modules in the simultaneously trained model receive from their
untrained predecessors provide some kind of regularization
for their training.

Interestingly, the validation losses do not diverge at epoch
300 yet, even though we found a difference in downstream
performance at that point of training (79.8% vs. 82.0% accu-
racy). Additionally, even though training and validation losses
deviate more strongly after 1000 epochs, the difference in per-
formance on the downstream task stays relatively constant
with 80.6% accuracy for the iteratively trained model and 82.7%
accuracy for the simultaneously trained model. These results
illustrate that the loss achieved during the training with GIM
cannot directly indicate the downstream performance of the
created representations.

4.1.4 Visualization of Feature Abstraction

In Figure 4.3, we visualize patches that individual neurons in
the three modules of the GIM model are sensitive to. While
in the first module neurons show a clear preference for edges
of specific orientations, they focus on more complex patterns
in the second module. The third module shows the highest
level of abstraction. Its neurons are highly selective for class-
specific patterns that are rather agnostic of the specific coloring
or orientation. These visualizations illustrate that individual
modules learn to iteratively increase the level of abstraction in
their representations even though the GIM approach optimizes
each module greedily without end-to-end backpropagation.
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(a) First Module

(b) Second Module

(c) Third Module
Figure 4.3: Groups of four image patches that
activate a certain neuron, at three individually
trained levels of the module stack. All modules
are trained greedily without labels.



experiments 34

Method
Phone

Classification
Accuracy

Speaker
Classification

Accuracy

Randomly initialized 27.6% 1.9%
MFCC features 39.7% 17.6%
Supervised 77.7% 98.9%
Greedy Supervised 73.4% 98.7%
CPC (Oord et al., 2018)* 64.9% 99.6%

Greedy InfoMax (GIM) 62.5% 99.4%

Table 4.3: Results for classifying speaker iden-
tity and phone labels in the LibriSpeech dataset.
All models use the same audio input sizes and
the same architecture. GIM creates representa-
tions that are useful for audio classification tasks
despite its greedy training and lack of a global
objective.

*In the original implementation, Oord et al. (2018)
achieved 64.6% for the phone and 97.4% for the
speaker classification task.

4.2 Audio
We evaluate GIM in the audio domain on the sequence-global
task of speaker classification and the local task of phone classifi-
cation (distinct phonetic sounds that make up pronunciations
of words). These two tasks are interesting for self-supervised
representation learning as the former requires representations
that discriminate speakers but are invariant to content, while
the latter requires the opposite. Strong performance on both
tasks thus suggests strong generalization and disentanglement.

4.2.1 Experimental Details

We follow the setup of Oord et al. (2018) unless specified
otherwise and use a 100-hour subset of the publicly available
LibriSpeech dataset (Panayotov et al., 2015). It contains the
utterances of 251 different speakers with aligned phone labels
divided into 41 classes. These phone labels were provided
by Oord et al. (2018) who obtained them by force-aligning
phone sequences using the Kaldi toolkit (Povey et al., 2011)
and pre-trained models on Librispeech (Panayotov, 2014).

We first train the self-supervised model consisting of five
convolutional layers and an autoregressive, single-layer Gated
Recurrent Unit (GRU). For the training of GIM, we split this
architecture into six separately trained modules, five encoding,
and one autoregressive. After convergence, a linear multi-class
classifier is trained on top of the context-aggregate represen-
tation cM without fine-tuning the representations. Remaining
implementation details are presented in Appendix B.2.

4.2.2 Results

Following Table 4.3, we analyze the performance of models on
phone and speaker classification accuracy. Randomly initialized
features perform poorly, demonstrating that both tasks require
complex representations. The traditional, hand-engineered
MFCC features are commonly used in speech recognition sys-
tems (Ganchev et al., 2005), and improve over the random
features but provide limited linear separability on both tasks.
On the speaker classification task, CPC and GIM outperform
the supervised baselines despite their feature models having
been trained without labels, and GIM without end-to-end back-



experiments 35

Method Accuracy

Speaker Classification
Greedy InfoMax (GIM) 99.4%
GIM without BPTT 99.2%
GIM without gar 99.1%

Phone Classification
Greedy InfoMax (GIM) 62.5%
GIM without BPTT 55.5%
GIM without gar 50.8%

Table 4.4: Ablation studies on the LibriSpeech
dataset for improving the biological plausibility
of GIM as well as its memory efficiency by restrict-
ing the flow of gradients in the autoregressive
module or by removing it altogether.

propagation. In this setting, both GIM and Greedy Supervised,
where individual layers are trained greedily similar to GIM
but with a supervised loss function, achieve similar results
to their respective end-to-end trained counterparts (CPC and
Supervised). When classifying phones, CPC does not reach the
supervised performance (64.9% versus 77.7%). GIM achieves
62.5%, while Greedy Supervised accomplishes 73.4%. Thus, in
contrast to the vision experiments (Section 4.1), we see sim-
ilar differences in performance between the greedily trained
models (GIM and Greedy Supervised) when compared to their
respective end-to-end optimized counterparts (CPC and Super-
vised).

Overall, the discrepancy between better-than-supervised
performance on the speaker task and less-than-optimal perfor-
mance on the phone task suggests that the features extracted
by GIM and CPC are biased towards sequence-global tasks.

4.2.3 Ablation Studies

The local greedy training enabled by GIM provides a step to-
wards biologically plausible optimization and improves mem-
ory efficiency. However, the last autoregressive module aggre-
gates its inputs over multiple patches employing Backpropa-
gation Through Time (BPTT), which puts a damper on both
benefits. We conduct two ablation studies in which we test
whether we can restrict the flow of gradients through time. By
doing so, we increase the (temporal) locality of the GIM train-
ing and thus its biological plausibility and memory efficiency.

In order to limit the flow of gradients through time, we
modify the autoregressive module. In general, the autoregres-
sive module gar takes into account the current input zt, as well
as the hidden state of the previous time-step ht−1, in order
to produce its output ct, i.e. ct = gar(zt, ht−1) (omitting the
module-index m here for brevity). In the standard GIM model,
we block the flow of gradients to the previous module, such
that ct = gar(GradientBlock(zt), ht−1). Thus, gradients are still
allowed to flow through time and can influence the calculation
of the hidden states in previous time-steps. Now, we restrict
this gradient flow in two different ways.
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log scale (lower is better) for intermediate rep-
resentations (convolutional modules 1 to 5), as
well as for the final representation created by the
autoregressive layer (module 6 – corresponding
to the results in Table 4.3). For comparison: A
linear classifier trained on top of the raw audio
data achieves an error rate of 0.98.

In the ablation GIM without BPTT, we remove BPTT by
blocking the flow of gradients between time-steps, such that
ct = gar(GradientBlock(zt), GradientBlock(ht−1)). Thus, the
gradients derived from the loss at time-step t do not influence
the calculation of the hidden state of the previous time-step
ht−1. For the ablation GIM without gar, we remove the autore-
gressive module entirely. Here, the linear classifier is applied
to the representation created by the last convolutional module
(i.e. zt).

In Table 4.4, we present the performance of the ablated mod-
els. Together, these two ablations indicate a crucial difference
between the tested downstream tasks. For the phone classifi-
cation task, we see a steady decline of the performance when
we reduce the modeling of temporal dependencies, indicating
their importance for solving this task. When classifying the
speaker identity, on the other hand, reducing the modeling of
temporal dependencies in the ablated models barely influences
their performance.

Together with the image classification results from Sec-
tion 4.1, where no autoregressive module was employed either,
this indicates that the GIM approach performs best on down-
stream tasks where temporal or context dependencies do not
need to be modeled by an autoregressive module. In these set-
tings, GIMs performance is on par with the CPC model, which
makes use of end-to-end backpropagation, a global objective,
and BPTT.

4.2.4 Intermediate Module Representations

The greedy layer-wise training of GIM allows us to train ar-
bitrarily deep models without ever running into a memory
constraint. We investigate how the created representations de-
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velop in each individual module by training a linear classifier
on top of each module and measuring their performance on
the speaker identification task. With results presented in Fig-
ure 4.4, we observe that each GIM module improves upon the
representation of their predecessor. Interestingly, CPC exhibits
equivalent performance throughout all intermediate modules
despite these modules relying solely on the error signal from
the global loss function on the last module. This is in stark
contrast with the supervised end-to-end model, whose inter-
mediate layers perform significantly worse than their greedily
trained counterparts. This suggests that, in contrast to the
supervised loss, the InfoMax principle “stacks well”, such that
the greedy, iterative application of the InfoNCE loss performs
similar to its global application.



5 Related Work
We have studied the effectiveness of the self-supervised CPC
approach (Oord et al., 2018; Hénaff et al., 2019) when applied
to gradient-isolated modules, freeing the method from end-
to-end backpropagation. In this chapter, we will provide an
overview of existing, biologically plausible learning algorithms
for ANNs, as well as representation learning approaches that
make use of similar concepts as our proposal, i.e. MI maxi-
mization and context prediction.

5.1 Biologically Plausible Learning Algo-
rithms

It is implausible that the biological brain uses a mechanism
similar to backpropagation for the adaptation of synapses. As
argued in Section 2.2.3, this is mostly due to two aspects of
the algorithm: the necessity for symmetric, reciprocal weights
and the representation and optimization of a global objective
function. Correspondingly, there are two lines of work that try
to develop more biologically plausible learning rules. The first
attempts to optimize a global loss by developing alternative
ways to assign credit to individual neurons across the network.
The second seeks to remove the necessity for a global objective
function by providing more local error representations.

5.1.1 Alternative Solutions to the Credit Assignment Prob-
lem

Backpropagation is highly effective in solving the credit as-
signment problem: given the error in the final output, which
connections in the network contributed to this error, and how
should they be changed to improve performance? It does so
by backpropagating the gradients of the loss to all layers in the
network, which requires the weights to be symmetrical (see
Section 2.2.1). However, such symmetrical weights are rarely
found in the brain. This finding motivates a line of research
that tries to optimize a global loss by assigning credit to the
connections in the network in different ways.

LeCun (1986) proposed an alternative way for assigning
credit in neural networks named Target Propagation. In this
method, each hidden layer is updated using targets instead of
gradients, eliminating the requirement for symmetric weights.
Ideally, these targets should be designed in a way such that
a network that realizes its targets concurrently minimizes its
loss in the final layer. One possibility is to use (approximate)
inverse transformations to backpropagate output activations
which optimize the loss. Difference Target Propagation (Lee
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et al., 2015) develops this idea further and adds a layer-wise
reconstruction error to these targets, which can stabilize impre-
cise inverses. While these approaches were shown to perform
well on MNIST, they do not match the performance of back-
propagation on more complex datasets such as CIFAR-10 and
ImageNet (Bartunov et al., 2018). Ororbia et al. (2018) advanced
the idea of Target Propagation further by choosing targets that
are within the set of possible representations of the layer to
be trained. This Local Representation Alignment technique
allows for more efficient updates of the layer’s parameters but
has yet to be successfully applied to more complex tasks as
well.

An alternative set of research attempts to find ways to back-
propagate gradients without the need for symmetrical weights.
In the method called Feedback Alignment (Lillicrap et al., 2016)
and its variant Direct Feedback Alignment (Nøkland, 2016),
backpropagation was shown to still work when using random
weights in the backward-pass. Similarly to Target Propagation,
this approach was shown to not scale to larger problems (Bar-
tunov et al., 2018). However, its performance can be improved
tremendously by choosing the feedback weights’ magnitudes
at random while keeping their signs fixed to the feedforward
weights (Xiao et al., 2019). Surprisingly, such networks can
attain the performance of networks trained with standard back-
propagation on ImageNet and MS COCO. Another alternative
to propagating gradients backward was proposed by Kohan
et al. (2018). In their algorithm, Error-Forward Propagation,
the output of the network is fed back into the input layer, ef-
fectively reusing the feedforward connections to deliver error
feedback. This method does not only remove the necessity for
symmetric weights but eliminates the architectural constraint
in which backpropagation requires the existence of some back-
ward connectivity pattern for every neuron. It requires a set-
tling process for each step during the training, however, and
it remains unclear whether it can be applied to large-scale
problems.

Another approach that attempts to find a more biologically
plausible way to assign credit to neurons is Equilibrium Propa-
gation (Scellier and Bengio, 2017). It computes the gradients of
the objective function similarly to backpropagation but prop-
agates the errors implicitly using only local perturbations. It
does so by dividing its training process into two phases. In
the “negative” phase, the input is presented and an energy-
based network settles to an energy-minimum. In the ensuing
“positive” phase, the output units are perturbed towards the
target and the network settles to a new energy-minimizing
state. Synaptic updates bring the energy-minimizing state of
the negative phase closer to that in the positive phase, thereby
making the network a better predictor of the target. As both
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phases make use of the same neural computation, this method
improves over the biological plausibility of backpropagation.
Nonetheless, it still requires symmetric weights, which puts a
damper on this benefit. Additionally, the practical applicability
of this approach still needs to be demonstrated. So far, exper-
iments were only conducted on small-scale datasets, and the
negative phase generally takes a long time to settle to a fixed
point representing the network’s prediction.

Overall, the discussed methods employ a global supervised
loss function and focus on finding more biologically plausible
ways to assign credit to neurons. This is in contrast to our pro-
posed algorithm, which makes use of backpropagation within
individual modules, but optimizes only local, self-supervised
losses.

5.1.2 Local Error Representation

The second aspect reducing the biological plausibility of back-
propagation is that it typically optimizes a global objective
function. First, a neural network propagates its input through
all layers to produce the final output. Then, this output is com-
pared to some target value, and the resulting error is used to
adjust the connectivity strengths throughout the network (see
Section 2.2.1). This is in stark contrast to biological synapses,
which are adjusted predominantly based on local signals. This
discrepancy has motivated a second line of research that aims
to develop more biologically plausible learning algorithms by
training with locally represented errors.

There exist several approaches that train layers greedily and
thus locally, by optimizing specifically designed supervised
loss functions. One such approach is Predsim which was de-
veloped by Nøkland and Eidnes (2019). Here, individual layers
are trained using a combination of a supervised cross-entropy
loss (which is similar to the greedy supervised baseline in our
experiments) and a newly developed similarity matching loss.
This similarity loss enforces representations to be clustered
according to their class label. This can be vaguely interpreted
as another way to extract coherent features (see Section 2.1.2),
where in this case one tries to preserve the coherence between
the input and its corresponding label. An alternative super-
vised loss function that can be applied to individual layers
was developed by Elad et al. (2018). Following the information
bottleneck theory, their loss function is designed to maximize
the MI between the outputs of a layer and the targets while
minimizing the MI between the inputs and outputs.

Balduzzi et al. (2015) propose a local learning algorithm
in which each layer is optimized using truncated feedback.
Essentially, they prune the backpropagation of gradients in
such a way that each layer is updated solely based on the
influence that it has on its immediate neighbor. Balduzzi et al.
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thoroughly back up their method by a theoretical analysis of
backpropagation, which allows them to show that their local
training still follows the same error gradients. However, it is
only applicable to networks with one-dimensional outputs.

Decoupled Neural Interfaces (Jaderberg et al., 2017) con-
stitute an entirely different approach for representing errors
locally. In this method, a global loss is optimized by using pre-
dicted synthetic gradients in place of the true backpropagated
gradients.

These methods all enable a network to be trained locally, on
a layer-wise level, and thus to enjoy the same asynchronous
training benefits as our proposed method. However, in con-
trast to Greedy InfoMax, they rely on labeled data for the
optimization of their parameters.

The most notable methods for unsupervised layer-wise train-
ing are deep belief networks (Hinton et al., 2006; Bengio et al.,
2007). These networks essentially stack Restricted Boltzmann
Machines, which are trained greedily using Contrastive Diver-
gence. After this pretraining, the network is optimized globally
using a supervised loss. Lee et al. (2009) showed that similarly
constructed convolutional deep belief networks applied on the
TIMIT dataset can achieve very good performance for multiple
audio classification tasks.

5.2 Representation Learning
Our proposal makes use of two key concepts related to repre-
sentation learning: MI maximization and context prediction. In
the following, we will provide an overview of existing methods
relying on these concepts.

5.2.1 Information-Theoretic Approaches

As argued in Section 2.1.2, information theory can provide a
useful framework for representation learning. At the moment,
the most promising approach in this setting is to maximize the
Mutual Information (MI) between representations of coherent
parts of the input, i.e. between parts that are predictive of one
another. Recently, several papers successfully applied variants
of this method to different domains.

The Contrastive Bidirectional Transformer (Sun et al., 2019),
for example, achieved state-of-the-art performance on video
captioning and action anticipation by learning representations
that maximize the MI between a video and its aligned text.
Instead of maximizing the MI between inputs from different
modalities, Deep InfoMax (Hjelm et al., 2019) maximizes the MI
between local and global representations of images. Bachman
et al. (2019) extended this method by simultaneously maximiz-
ing the MI between several independently augmented copies
of each image and multiple features scales. Using this ap-
proach, they hold the current state-of-the-art for unsupervised
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pretraining on ImageNet using standard linear evaluation of
their features. Similarly, Tian et al. (2019) maximize the MI
between different views, such as different color channels, of an
image. They show that the performance generally scales with
the number of employed views.

The approach that we follow in our proposal is Contrastive
Predictive Coding (CPC) (Oord et al., 2018). Here, the MI be-
tween temporally nearby representations is maximized, which
biases the model towards learning to represent slow features
(Wiskott and Sejnowski, 2002). Hénaff et al. (2019) showed that
this approach could achieve state-of-the-art semi-supervised
performance on ImageNet with as little as 13 labeled instances
per class. Poole et al. (2018) unite some of these recent works
under a common framework. They highlight that the objective
in CPC, InfoNCE, exhibits low variance at the cost of high bias
and propose new lower bounds that allow for balancing this
bias-variance trade-off.

Most recently, Tschannen et al. (2019) argue that the success
of the presented methods might only be loosely coupled to
their information-theoretic background. Instead, they show
that the performance of these models depends on inductive
biases given by the feature extractor architecture and on the
parameterization of the MI estimators. Nonetheless, they ac-
knowledge that the preservation of coherences in the created
features plays a vital role in successful representation learning.

All methods considered so far achieve convincing results
for features extraction, but they all rely on models that are
optimized end-to-end using a global objective. In contrast to
this, we show that we can employ a similar MI maximization
approach to extract useful features using a stack of greedily
optimized modules, i.e. using only local objectives and no
end-to-end backpropagation.

An information-theoretic approach for greedy, layer-wise
representation learning has, to the best of our knowledge, only
been explored in the context of total correlation (Ver Steeg
and Galstyan, 2015). By maximizing this measure related to
MI, representations are enforced to be maximally informative
about the data. In contrast to GIM, this approach has only
been applied to small-scale problems, is restricted to discrete
random variables and the number and cardinality of latent
factors to be used in a representation needs to be specified
beforehand.

5.2.2 Context Prediction Methods

Besides the information-theoretic approaches, several context
prediction methods have been explored for unsupervised rep-
resentation learning. A prominent example in language pro-
cessing is Word2Vec (Mikolov et al., 2013), in which a model
is trained to produce word embeddings by predicting words
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given their context. Likewise, Doersch et al. (2015) study such
an approach for the visual domain.

Hyvarinen and Morioka (2016) propose to make use of the
non-stationary structure in time series. Their Time-Contrastive
Learning approach trains a feature extractor in such a way
that it enables a linear classifier to discriminate between dif-
ferent segments in temporal data. Thus, the features extractor
needs to represent the temporal structure of the data, in partic-
ular, the underlying distributions of different segments. Their
approach provides the first identifiable result for nonlinear
Independent Component Analysis (ICA). Similarly, graph neu-
ral networks use contrastive principles to learn unsupervised
node embeddings based on their neighbors (Nickel et al., 2011;
Perozzi et al., 2014; Nickel et al., 2015; Kipf and Welling, 2016;
Veličković et al., 2018).

Inversely to the MI maximization approaches described
above, Schmidhuber (1992) proposed a method where indi-
vidual features are trained to minimize their predictability by
other features. This forces them to extract independent factors
that carry statistical information but entails the risk of neurons
latching onto local independent noise sources in the input.

Similar to the information-theoretic approaches for repre-
sentation learning, these methods focus on providing global
objectives with which to update one coherent model with end-
to-end backpropagation. In contrast to this, our proposed
method makes use of a context prediction method (CPC) in
order to train modules greedily with local losses.



6 Discussion & Future Work
We presented Greedy InfoMax (GIM), a novel self-supervised
representation learning algorithm that employs a stack of mod-
ules trained greedily with local objectives. We demonstrated
that each module improves upon the output of its predecessor,
and that the top module can achieve competitive performance
to the same architecture that is optimized using end-to-end
backpropagation. In this chapter, we will provide a discussion
on the biological plausibility of GIM and its computational
ramifications, and elaborate on possible future work.

6.1 Biological Plausibility
Since humans’ cognitive abilities exceed those of present-day
computers in many fields, taking lessons from the brain’s in-
ner workings might help us to enhance the capabilities of
algorithms. Following this idea, we developed GIM, which is
inspired by the apparent gap between the standard way of opti-
mizing neural networks, backpropagation, and neuroscientific
evidence on how the brain learns.

We argue that our method is indeed more biologically plau-
sible than backpropagation. First of all, we do not employ
a global objective for the optimization of our network. In-
stead, connections in the network are updated based on local
information. This resembles learning processes in the brain
more closely, where synapses are primarily modulated by the
activations of their pre- and post-synaptic neurons and thus
by the neurons local to the synapse. Secondly, we do not
employ labeled data but use a self-supervised loss instead.
Similarly, the brain does not require annotated data to do fea-
ture learning. Thus, GIM may hint at how the brain can learn
based on statistical regularities in the given data. Additionally,
GIM is compatible with established neuroscientific theories as
depicted in Section 2.3.

Although GIM provides a step forward, the local loss func-
tion that we employ is not entirely biologically plausible. The
InfoNCE loss involves negative sampling: it contrasts the fu-
ture input against random samples from all other possible
inputs. It remains an open question whether the brain could
implement such a sampling strategy. Alternatively, it would
be interesting to investigate whether a more biologically plau-
sible loss function for preserving the MI can achieve similar
performance to the InfoNCE loss.

A second point to consider is that our proposal focuses on
providing a more local way for optimizing neural networks,
but we still employ backpropagation within the individual
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modules. Thus, we neglect the second aspect that reduces the
biological plausibility of backpropagation – the necessity for
symmetric weights. These symmetric connections are used in
the backpropagation algorithm to propagate error feedback to
all connections. This enables it to solve the credit assignment
problem (Bengio et al., 2015): if there is an error in the final
output, which connections should be changed to improve the
performance? We argue that this problem might, in fact, not
be relevant in networks that are optimized locally using GIM.
Instead of requiring connections to improve on a global ob-
jective, we train them to create features that are informative
about neighboring features in position or time. In our current
approach, this still requires symmetric weights in order to
propagate the feedback within a module from the local loss
function to the respective connections to be updated. It remains
an open question whether we could optimize individual layers
towards a similar objective, but even more locally in order
to remove this restriction. Alternatively, since more biologi-
cally plausible methods such as Direct Feedback Alignment or
Error-Forward Propagation appear to work well for small scale
architectures (see Section 5.1.1), we suspect that it is possible
to use these instead of backpropagation for assigning credit
within modules.

6.2 Computational Considerations
In this section, we will discuss the computational properties
of our proposed self-supervised learning algorithm, GIM. This
includes its memory and computational complexity, as well as
some outlook on possible future work, e.g. how it might be
extended for massively parallelized training.

GIM can reduce the GPU memory consumption for the
training of a neural network considerably. Since it allows each
module to be trained separately, the memory complexity can
be reduced by the factor of the depth of the network as we
have argued theoretically in Section 3.2 and shown empirically
in our experiments.

At the same time, GIM increases the computational complex-
ity in comparison to the end-to-end optimized CPC approach.
When training with local objectives, we need to draw samples
and calculate the loss in each module separately. On top of
that, when training modules iteratively, the input data needs
to be loaded for each module individually.

However, GIM allows for more efficient parallelization of
the training process, which could help to counteract the in-
creased computational complexity in practice. Since modules
can be trained separately, the training process can be paral-
lelized easily, e.g. by training each module on a separate GPU.
This scheme could be implemented efficiently, as virtually no
communication between modules and thus GPUs is required.1

1 For the most efficient implementation, one
would have to store the outputs of each mod-
ule as a dataset to train the next module on. This
data-saving and -loading cycle could run in par-
allel with the training of the modules such that it
does not influence the computations on the GPUs.
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Such parallelization would be most useful for the training
of very deep neural networks that would otherwise be con-
strained by their memory or run-time requirements. So far, we
conducted experiments on comparatively small models that
were divided into maximally six modules. Further experiments
need to determine whether GIM scales to deeper architectures
that are divided into a larger number of separately trainable
modules. If this was the case, GIM could provide an easy and
efficient way for the massively parallelized training of neural
networks.

While parallelization could provide a tremendous speed-
up for the training of neural networks, GIM also allows for
training very deep networks that would otherwise not fit into
GPU memory. As argued before in Section 3.2, GIM’s memory
footprint can be reduced considerably by training modules
iteratively, one after another. However, our experiments in-
dicate that such asynchronous training can lead to impaired
results (see Section 4.1.3). Future work needs to examine how
to circumvent this problem. One potential solution could be
to interleave the training of the individual modules. In our
experiments, we used the most extreme setting in which one
module was trained until convergence before the training of
the next module started. Detaching to this extent is not nec-
essary for reducing the memory footprint of GIM, however.
As long as we restrict the training process to train one mod-
ule at a time, we are free to switch around which module to
update at each time-step. This should allow for achieving the
same downstream performance as the simultaneously trained
model while reaping the memory benefits of the iterative train-
ing. However, switching modules to be updated increases the
amount of communication necessary as modules need to be
interchanged between the GPU and memory.

A second possible solution to circumvent the decreased per-
formance of the iterative training would be to tackle the overfit-
ting that we observed in our experiments. They revealed that
especially the higher modules suffer from this problem when
they are trained on top of converged predecessors. This be-
havior might be caused by the different inputs that the higher
modules receive during simultaneous vs. iterative training.
When training all modules simultaneously, the lower modules
provide noisier inputs to the higher modules as they are still
adjusting their weights as well. These noisy inputs might regu-
larize the training of the higher modules and reduce overfitting.
Thus, it might help to adjust the training of the higher modules
to be more similar to the simultaneous training case, e.g. by
inducing noise on their inputs in the early stages of training.
Alternatively, it might be possible to circumvent overfitting by
applying other methods commonly applied for this problem,
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such as dropout (Srivastava et al., 2014) or batch normalization
(Ioffe and Szegedy, 2015).

A different aspect that was revealed by our experiment is
that the representations created by GIM (and CPC) are biased
towards global features: they perform better on the global tasks
of speaker and image classification. In the local task of phone
classification, however, both approaches lag behind the super-
vised model. Oord et al. (2018) showed that different sampling
strategies, e.g. drawing negative samples from sequences of
the same speaker only, can influence the model’s performance
on the downstream task. It would be interesting to extend this
approach for GIM. Its local training enables us, for instance, to
apply different sampling strategies to different modules. Thus,
we could potentially influence the amount of abstraction of
the features in each module by choosing different sampling
strategies, which in turn could lead to improved downstream
performance.

Last but not least, it would be interesting to investigate
whether other information-theoretic approaches for represen-
tation learning could be applied in a similar greedy training
regime as GIM. After all, they all rely on a similar concept:
they maximize the MI between coherent representations, which
in turn maximizes the information preserved by the model.
We argued that this information preserving property of the
InfoNCE loss allowed us to apply it greedily to individual
modules. Thus, it would be interesting to test this hypothesis
by applying other MI maximization approaches, such as Deep
InfoMax (Hjelm et al., 2019) or Contrastive Multiview Coding
(Tian et al., 2019), to the training of individual modules.



7 Conclusion
We presented Greedy InfoMax, a novel self-supervised greedy
learning approach. The relatively strong performance demon-
strates that deep neural networks do not necessarily require
end-to-end backpropagation of a supervised loss to learn use-
ful features for perceptual tasks. Our proposal enables greedy
self-supervised training, which makes the model less vulner-
able to overfitting, reduces the vanishing gradient problem,
and enables memory-efficient asynchronous distributed train-
ing. While the biological plausibility of our proposal is lim-
ited by the use of negative samples and within-module back-
propagation, the results provide evidence that the theorized
self-organization in biological perceptual networks is at least
feasible and effective in artificial networks, providing food
for thought on the credit assignment discussion in perceptual
networks (Bengio et al., 2015; Linsker, 1988).
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Appendices
A Additional Material for the Background

Section
A.1 Proof of Proposition 2.2

Proof. For the lower bound, we see that if PX(x) = 1 for some
x ∈ X , then ∀x′ 6= x : PX(x′) = 0 (by the properties of
probability distributions). By convention, for x ∈ X with
PX(x) = 0, the argument in the summation of the entropy is
zero. Together with PX(x) log 1

PX(x) = 0 for PX(x) = 1, we get
that H(X) = 0. If H(X) = 0, then for any x with PX(x) > 0, it
must be that log 1

PX(x) = 0, which is true for PX(x) = 1. Jensen’s Inequality
Let f : D → R be a concave function and n ∈N.
For any p1, . . . , pn ∈ R≥0 with ∑n

i=1 pi = 1 and
for any x1, . . . , xn ∈ D it holds that

n

∑
i=1

pi f (xi) ≤ f

(
n

∑
i=1

pixi

)
.

If f is strictly concave and p1, . . . , pn > 0, then
equality holds iff x1 = . . . = xn.
Proof omitted.

For the proof of the upper bound, we use Jensen’s inequality.
The log-function is strictly concave on R≥0, and thus

H(X) = ∑
x∈X

PX(x) log
1

PX(x)

≤ log ∑
x∈X

PX(x)
1

PX(x)

= log ∑
x∈X

1

= log |X | .

Since the log-function is strictly concave, we may restrict
the sum to all x with PX(x) > 0. Then, equality holds
iff log 1

PX(x) = log 1
PX(x′) , and thus PX(x) = PX(x′) for all

x, x′ ∈ X .

A.2 Proof of Proposition 2.4

Proof. The lower bound follows from proposition 2.2 and defi-
nition 2.3.

For the proof of the upper bound, we get:

H(X|Z)− H(X)

= ∑
x∈X ,z∈Z

PXZ(x, z) log
PZ(z)

PXZ(x, z)
− ∑

x∈X
PX(x) log

1
PX(x)

By marginalization we can reformulate as

= ∑
x∈X ,z∈Z

PXZ(x, z) log
PX(x)PZ(z)

PXZ(x, z)

Due to the convention that the terms in the summation are set
to zero when PXZ(x, z) = 0, we can restrict the summation to
those pairs (x, z) with PXZ(x, z) > 0

= ∑
x∈X ,z∈Z :
PXZ(x,z)>0

PXZ(x, z) log
PX(x)PZ(z)

PXZ(x, z)
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Since the log-function is strictly concave on R≥0, we can make
use of Jensen’s inequality:

≤ log ∑
x∈X ,z∈Z :
PXZ(x,z)>0

PXZ(x, z)
PX(x)PZ(z)

PXZ(x, z)

= log ∑
x∈X ,z∈Z :
PXZ(x,z)>0

PX(x)PZ(z)

≤ log ∑
x∈X ,z∈Z

PX(x)PZ(z)

= log

(
∑

x∈X
PX(x) ∑

z∈Z
PZ(z)

)
= log 1 = 0 ,

where for the first inequality, equality holds iff ∀(x, z) with
PXZ(x, z) > 0 : PX(x)PZ(z) = PXZ(x, z). For the second
inequality, equality holds iff ∀(x, z) with PXZ(x, z) = 0:
PX(x)PZ(z) = 0. It follows that H(X|Z) = H(X) iff ∀(x, z) :
PX(x)PZ(z) = PXZ(x, z), i.e. iff X and Z are independent.

A.3 Derivation of the Backpropagation Algorithm

In the backpropagation algorithm weights are updated in the
negative direction of the derivative of the loss function with
respect to the weight to be updated:

∆wij = −η
∂L

∂wij
. (1)

We can calculate this derivative using the chain rule:

∂L
∂wij

=
∂L
∂oj

∂oj

∂wij
(2)

=
∂L
∂oj

∂oj

∂zj

∂zj

∂wij
. (3)

For the last term, we see that only one term of the summation
depends on wij, such that

∂zj

∂wij
=

∂ ∑n
k=1 wkjok

∂wij
=

∂wijoi

∂wij
= oi . (4)

The second term in Equation (3) can be rewritten as the derivate
of the activation function:

∂oj

∂zj
=

∂ϕ(zj)

∂zj
. (5)

The first term in Equation (3) can be readily evaluated if j is an
output neuron. If j is a hidden neuron, however, we need to
make use of the chain rule again to get:

∂L
∂oj

= ∑
m∈M

∂L
∂om

∂om

∂zm

∂zm

∂oj
(6)

= ∑
m∈M

∂L
∂om

∂om

∂zm
wjm , (7)
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where M contains all the neurons receiving inputs from neuron
j. By defining the error term δj as

δj =
∂L
∂oj

∂oj

∂zj
. (8)

we arrive at the final update rules:

∆wij = −η
∂L

∂wij
(9)

= −ηoiδj (10)

where

δj =


∂L
∂oj

∂ϕ(zj)

∂zj
if j is an output neuron(

∑m∈M wjmδm
) ∂ϕ(zj)

∂zj
if j is an inner neuron

(11)

B Experimental Setup
We use PyTorch 1.0 (Paszke et al., 2017) for all our experiments.

B.1 Vision Experiments

In our vision experiments, we employ the ResNet-50 v2 archi-
tecture (He et al., 2016b), in which we remove the max-pooling
layer and adjust the first convolutional layer in such a way
that the size of the feature map stays constant. Thus, the first
convolutional layer uses a kernel size of 5, a stride of 1, and a
padding of 2. Additionally, we do not employ batch normal-
ization (Ioffe and Szegedy, 2015) and remove the forth residual
block of the architecture. For the greedy training with GIM,
we split the remaining architecture according to the residual
blocks into three separately trained modules.

We train our model on 8 GPUs (GeForce 1080 Ti) each with
a minibatch of 16 images. We train it for 300 epochs using
Adam and a learning rate of 1.5e-4 and use the same random
seed in all our experiments.

For the self-supervised training using the InfoNCE objective,
we need to contrast the predictions of the model for its future
representations against negative samples. We draw these sam-
ples uniformly at random from across the input batch that is
being evaluated. Thus, negative samples can be drawn both
from the same or from different images at random patch lo-
cations. We found that including the positive sample (i.e. the
future representation that is currently to be predicted) in the
negative samples did not hurt the final performance. For each
evaluation of the InfoNCE loss, we use 16 negative samples
and predict up to k = 5 rows into the future. For contrast-
ing patches against one another, we spatially mean-pool the
representations of each patch.

Before applying the linear logistic regression classifier on
the output of the third residual block, we spatially mean-pool
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the created representations of size 7× 7× 1024 again. Thus, the
final representation from which we learn to predict class labels
is a 1024-dimensional vector. We use the Adam optimizer for
the training of the linear logistic regression classifier and set
its learning rate to 1e-3. We optimized this hyperparameter
by splitting the labeled training set provided by the STL-10

dataset into a validation set consisting of 20% of the images
and a corresponding training set with the remaining images.

B.2 Audio Experiments

The detailed description of our employed architecture is given
in Table A1. We train our model on 4 GPUs (GeForce 1080 Ti)
each with a minibatch of 8 examples. Our model is optimized
with Adam (Kingma and Ba, 2014) and a learning rate of 2e-4
for 1000 epochs. We use the same random seed for all our
experiments. Overall, our hyperparameters were chosen to be
consistent with Oord et al. (2018).

For the supervised baselines, we observed strong overfitting
which we countered by early stopping after 100 epochs on the
phone classification task and after 300 epochs in the speaker
classification task.

Layer Output Size Parameters
(Sequence Length ×

Channels)
Kernel Stride Padding

Input 20480× 1
Conv1 4095 ∗ ×512 10 5 2

Conv2 1023 ∗ ×512 8 4 2

Conv3 512 ∗ ×512 4 2 2

Conv4 257 ∗ ×512 4 2 2

Conv5 128× 512 1 2 1

GRU 128× 256 - - -

Table A1: General outline of our architecture for
the audio experiments. Every convolutional layer
is followed by a ReLU activation function.
* For applying the InfoNCE objective on these
layers, we randomly sample a time-window of
size 128 to decrease the dimensionality.

Similarly to the vision experiments, we take the negative
samples uniformly at random from across the batch that is
currently evaluated. Again this may include the positive sam-
ple. In our audio experiments, we use a total of 10 negative
samples and predict up to k = 12 time-steps into the future.

We train the linear logistic regression classifier using the
representations of the top, autoregressive module. For the
speaker classification task, the representations are first average-
pooled over all time-steps of the sequence, while no pooling
is applied for the phone classification. Again, we employ
the Adam optimizer but select different learning rates than
before. For this hyperparameter search, we split the training
set provided by Oord et al. (2018) into two random subsets
using 25% of the samples as a validation set. In the speaker
classification experiment, we used a learning rate of 1e-3, while
we set it to 1e-4 for the phone classification experiment.
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